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Picard’s classical method of consecutive approximations is used to solve simultaneously 

the problems OR existence and determination of controls, under some e.onstraints, which 
transfer a quasi-linear system from a given position in tbe phase space into the origin of 
that space within a fixed time . In addition we find the radius of convergence, radius of 
the sphere of controllability and the upper bound for those values of the parameter of 

nonlinear elements, for which the system under consideration is controllable (in the Kal- 

man 0 J sense) . We consider one particular case and compute the quantities mentioned 
above, for a quasi-linear second order system . 

1, Let the motion of some dynamic system be described by 

dxv n 
-3 

dt 2 t$ (t)x*+ eY?,(x~, *. .,xn, t)+ uv(t), x:,(O) =z,o(v= 1, * * .,n) (1.1) 
F-1 

Here =” are the phase coordinates of the system under consideration : a,& (c) are the 

parameters of the system which are known and continuous functions of time : !!, (Xi, *. . 

..*, Xnl t) are nonlinear functions ; y, @) are the controls, the behavior of which is 

to be determined, and C is a certain positive parameter. 

Set of scalar equations (1.1) is equivalent to the matrix equation 

$=A(t)x+aY(r, t)-+-u(t), x(O)=zO (1.2) 

where 2, A (t), 3’ (x, t), u (t) and z” are the following manices : 

x-~~,lPW. A(~)=Il~,l,(Nl(~W, Yf=. f)=J(Yy(~~,...,~n, t)fl(nx$), 

u (t) = II uy (t) II (n x I), z” =:\I z,OU (n x i) 

Denoting by x< -1/ ) the normalized fundamental matrix of (1.2) when u( 5 > z 0 and 
f: = 0 , we can replace the matrix differential equation (1.2) which is nonlinear, with 
the following nonlinear matrix integral equation 

f t 
x(t, u) = x(t) &‘-i- 8 ?i-‘(@~(x{o, u). @do + 

[ 1 s 
X-l(a)u(a)da 1 (1.3) 

a 0 

where X- ‘( Q) denotes the inverse of X( 0 ) . 

Let us limit ourselves to the controls constant over the interval 0 S i; 5 $1 

u (t) = Ii = cons (W 
and let us consider the problem of determination of a constant control vector u = 11 uy 11 - 

4n x 9, constrained by the inequality 
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the vector being such that 

is sstis fied. 

1 u 1 = ( 2 rq”* s u* (1.5) 
“El 

x (t1, u) = 0 (1.6) 

Here $1 is the instant of time and fi is a positive number, both specified in advance. 

We know that the problem of this type dealing with controlled motion of dynamic sys- 
tems for the case when the constant control vector u is not subject to the constraint 

(1.5). was first stated and solved by Roitenberg @]. 
It is easy to show, using (I, 3), that the condition (1.6) will be fulfilled when the vec- 

tor u is chosen as to satisfy the following relations 
11 

u = - w-1 (tl) z” - ew-’ (tl) s x-1 (E) up (x(t, u), t) cft (4.7) 
0 

3 t 

x (t, u) = x (t) [p + w (t) u i- fJ 1 x-l (4 v (x (a, u), a) do] (w (t) - $ x-1 (a) Lioj 

0 0 

O,<t,(tr (W 

Substitution of (1.7) into the right-hand side of (1. 8) results in the nonlinear matrix 
integral equation obtained by Roitenberg in [2]. Solving the latter and inserting this 
solution into the right-hand side of (1.7) we obtain numerical values for the required 

vector u . We do not know, however, whether the inequality (1.5) holds, but we find 
that such conditions exist which, when imposed on the right-hand side of the matrix 

equation (1. Z), produce the following result: a constant control vector u obtained from 
(1.7) and (LB), fulfils the inequality (L 5). These conditions are: 

I”. Vector function I (CC, t) must be continuous in all arguments over the closed 

region DAfI (x , t) 

Ddf fx, 1) = ( I x j .< A = (1 + 8) k*h-U*tr, 0 < t < tJ ff.9) 

of the (72 + l)-dimensional space, Here 

tj= 1 
(1.10) 

h-W-t1 ’ 
h+=mnx(X(t)l, h- = max I X-l (t) 1, W- = 1 W-1 (tl) 1, t E [0, tl] 

Kn (1.9) and (1.10) 1 Z 1 d enotes the norm of the matrix Z , Here and the following 

we shall take the norm as the root of the sum of squares of the elements of the matrix. 

2*. In the region *$ D, ( x, i) vector function y ( x , I$) satisfies the Lipshits’ ?-con- 

dition in x . This means, that for any two points (x”, C) and (x’, 8) of the region 
DAtl (X, t) , the condition 

IYl(x’, t)-7Y(x”,t)[\<~lX”-x’~, z = const (l.fl) 

holds. 

3”. In addition, 

.!I* IzOI\<x, = ---eh-Kt,, K=sup, 
W- I y(xP t, 1, (x, t, E DAptl (x, t) (1.12) 

4O. Paramerer E is defined by 

U<e<e,=min 
i 

2 
(I + tt-w-t,) k+h-rtl ’ h-w%tl 1 

(1.13) 

We shall show, that, when the above assumptions hold, there exists a constant control 
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vector u satisfying the condition (1. 5) together with relations (1.7) and (1. S) , and we 

shall use Picard’s method of consecutive approximations. Taking 

uo = - w-1 (t,) z", x (t, IlO) = X(1) [zO -j- W(l)uO], lJ < t < t1 (I .14) 

as the zero approximation, we see that [ u” I \< (I*, x (t, CL,“) E DAtl (x, t) (by condition 

3”) and from (1.14) it follows that x ($1 , u”) = 0, 
Let us now assume that the k-th approximation is found and that it is such, that 

IUk19 u*, x (t, d) E DAfl (x, f), x (tl, UK) = 0 (1.15) 

Then the (k + l)-th approximation is given by 
II 

uk+l= uo -eW-l(h) 
s 

X-l(t)Y(x(t,uk), t)dt 
0 

(1.16) 

1 

x(t, uk+l) = x (1) z” + w (1) uk+l + e s x-1 (a) Y (x (a, uk), Q) da7 I* o,<t\<t, (1.17) 
0 

By virtue of condition 3’ we can easily show that 

I uktl( f u*, x(t, uk+l) E DAfl (x, t) 

while (1.16) and (1.17) imply that x (tl uktl) = 0. 

Let us now consider the question of convergence of (1.16) and (1.17). We shall show 

later that (1.17) is equivalent to the problem of convergence of the series . 

5 [x (t, uk+l) - x (t, Ilk)] 
k=o 

In its place, let us now consider the majorizing series 

5 maxf 1 x (t, uk+l) -x (t, uk) I} (t E [O, 111) 
k-0 

Using (1.17) we can easily show that the following estimate holds: 

maxt I x (1, u*+l) - x (t, uk) 1 < .sh+h-rt, {maxt 1 x (t, uk) - x (t, uk-l) 1) + h+h-t, I uk+l - ukl 

(t E IO, 111) (1.18) 
while (1.16) yields 

I Is+1 - uk / < dz-W-t, {max I x (t, u”) - x (t, G-l) I } (t E [0, tJ) (1.19; 

I.ast two relations give 
maxt I x (t, uk+l) - x (t, Uk) I d E (1 + h-W-t,) h+h-rt, {maxt 1 x (t, uk) - x (t, &-I) 1) 

(t E 10, a) 
or.(bv virtue of the choice of 8 ) 

maxtvl x (C u~-‘~) -x 6 uk) I G e (1 + h-W-t,) h+h-rtl < 1 

maxt I x (t, uk) - x (t, ukml) 1 
it E [O, h]) (1.20) 

which shows that the majorizing series (by the D’Alembert criterion) converges. Hence, 
the sequence of approximations (1.17) converges uniformly to some continuous VWtOr 

function x (t 1 u*) E DAti (x, t), while the sequence of approximations (1.16) converges 

by (1.19), to some constant vector u*. At the same time x( 5, u’) satisfies the inte- 

gral matix equation (1. 8). while the constant vector u* satisfies (1.7). 
Now we can easily see that I u* 1% CJ* and x (tl, u*) = 0, which was to be proved. 
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2, We shall now consider the case, when the number of controls is smaller than n , 
r-or definIreness let us deal with one control only. Let us assume that the motion of the 
system under consideration is described by the following matrix equation: 

dX 
-= 
dt 

A (t) x + eY (x, t) + b(t) u (t), x(0) = L ) b (t) = II by (t) II (n X 1) (2.1) 

Mere b( ti) is a known continuous vector function of time and U( ti ) is the control 
representing a scalar function of time and constrained by the condition 

I IJ, it, I < u*, 0 < t < t,, (2.2) 

The matrix differential equation (2.1) is equivalent to the following rnatLIA integral 

equation t t 

x(t, u) = x(t) z’ + & * x-‘(6) w (x (6, u), G) d6 -b 1 x-‘(6) b (6) u (6) d6 

[ \ 0’ 0 I 
(2.3) 

We shall now solve the problem or control of the motion of the system (2. l), i. e. the 

problem of establishing the law of variation with respect to time of the function U(.t ) 

satisfying (2.2) and transporting the systemX2.1) into the position 

x (t19 u) = 0 (2.4) 

Following Roitenberg, we shall devide the time interval 0 5 ti s $1 into n equal 
or unequal subintervals and seek U( t ) in the form of a step function which is constant 

over each subinterval 

p (t) = uy = const, (J +_-l d t < o, (Y = I..., n, (To = 0, on= tJ (2.5) 

Such a procedure results in an artificial increase of the number of controls until it is 
equal to the number of controlled coordinates. As a result, we obtain the following 
relations defining the vector u = 11 ti,, Ij (n x i), 

t1 
U=UO-Ew*- 1 (W 1 x-‘(t) Y (X (h u), t) dt, u” * - w*-’ (tx) z0 (2.6) 

0 

x(~,U)=x(~)~~0+w,(t)u+ESX-1(6)~(x(6, u), .)9 o<t<t, (2.7) 

rlere WT1( tl) is the i nverse of W, (%I) , and W,( 6) is given by 
(2.8) 

aY* (1) 

w,(t)=IIW,“(t)II(nxn), W*“(t)=i (t-6 v-1) 1 X-1 (6) b (a) dci (Y = 1, . . .) II. 

%-1 

where 

l-J,* (2) = t +- (a, - t) 1 (t -a,) (Y = 1, . ..) n) 

l@-6)= ; 1 for t<6 
for. t >,6 

Since tl > 0” for all v , we easily see that 

c,* (Q = c,, 1 (tr - u,J = 1 (Y = 1 . . . n) 

Putting in (2. 8) ti = if1 we obtain simple expressions for w,” (tr), namely 

(2.9.) 

(2.10) 
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w* “(I,)= \ X-l(~)b(z)& (Y 7 1, . .( I(; 5” -I), 6, = II) (2.11) 
C 

R-1 
Although the manner of subdividing the time interval is arbitrary, it must be nonsingular, 

l, e. the determinant of the matrix W, ( $1 ) must not be equa1 to zero, otherwise Expres- 

sion (2.6) will be meaningless. 
Thus, the case considered above, may be reduced by means of nonsingular subdivision 

of the interval [0, 61) into 72 equal subintervals, to the case discussed in Section 1 . 
The above method of consecutive approximations can be used to solve (2.6) and (2.7). 

Indeed, let us assume that the k-th approximation is already found and it is such, that 

I uk I < u*, x (!I, u”) = 0 

Then, the (k+ l)-th approximation will be given by 
11 

&I= uo - eW*-’ (fl) s x-1 (t) Y (x (t, u”), t) tit (2.i2) 

0 

x (k uk+l) = x (t) rz” + w, (f) ,k+1 + 8 (x-1 (G) Y (x (a, uk), 6) c&s1 
L 0” J 

x (t, II”) = x(t) [z” + w, (t) LPI, o<t<ttl (k = 0, 1, 2,. . .) 
(2.13) 

It is easy to show that if the magnitudes n and Kc appearing in the conditions 1’ to 

3” of Section 1 are, for the above case, given by Formulas 

A = (1 + 8) h+h-bu* t,, & = 
1 

h 
b = max 1 b(t) 1, W,- = j W,-1 (tl) *2 E [(I, tt1 _ 

W,-btl ’ 

Xc = u* / W,- - eh-Kt, 

while the parameter 6 is subject to the condition 

(2.24) 

’ <’ ‘a’ = min I 1 u* 
(1 + h-W,-&) hth-rtl 9 h- W,-Ktl 

(2.15) 

then under conditions 1’ to 4’ with the above alterations incorporated and under the 
assumption that detw* ( $1) # 0 , all approximations (2.12) for the control vector will 
satisfy the condition 1 uk+ll < U*, and consequently 

1 uk+l(t) I \< max I uvk-kl I< I uktlj < U* (2.S) 

where 
U”+‘(f) = $+I, O”_l d t 4 ql (Y = 2, . ., n; 50 = 0, 0, = tl) 

and the sequences of approximations (2.12) and (2.13), converge. In other words. under 

these conditions a control U”( t ) will exist, which will satisfjr (2.2) and will transport the 

system (2.1) into the coordinate origin of the phase space, in time fil . 
It should be noted that a problem of this type on the control of motion of nonlinear 

systems of more general form, was considered in [3J Sufficient conditions given there 

are, however, unconstructive in the sense, that they do not lead to determination of the 
radius of convergence and the region of controllability, The present paper presents the 

formulas for determination of the radius of convergence n , radius of the sphere of con- 
trollability KC and for the upper bound Co of the values of parameter E, 

9. As an example, we shall consider the problem on determination of the above quan- 

tities for a second order system, 
Equations of precessional motion of an Anschiitz gyrocompass in presence of nonlinear 
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restoring force, can be represented as [4] 

dqldt = p2r, + u (t), dx.Jdt = - ,LQX~ - 2vx2 - exla (3.1) 
where 

(3.2) 

Here we employ the notation used in [4] and denote the dimensionless time by 6. 
Using x= xr ( 

II I/ 
A= o b 

X2 II - PI II -2v ’ y@)= ll_“,pll~ b =11;11 (3.3) 

we shall replace the set of scalar equations (3.1) with its matrix equivalent 
dx 
- = Ax + eY (x) + bu (I) 
dt 

(3.4) 

Let us limit ourselves to the case when 

I u (0 I < u*, o<t,<t, (3.5) 

and consider the problem of determination of n , Kg and c for which the system (3.1) 

is controllable, i. e. for which a control exists satisfying (3. 5) and transporting the system 

(3.1) into the position ..J! =X2 = 0 in time $1 . 
To solve this problem, we must find the fundamental normalized matrix of (3.1) with 

tl(ti)-0 and 8=0. It is easily shown, that this matrix has the form 

x (t) = e 
+l 

II 
cos wt + (Y/W) sin c0t 

- (p1/ 0) sir, ot 
(IL2 

cm cot 
/ w) sin tit 
-(v / 0) sin 

(w= lqG=3 

Here we have one control and two controlled coordinates. consequently the interval 

0 2 6 2 $1 should be divided into two (equal) subintervals. 
Using the following numerical values 

pr = 0.19, pz = 0.20, 2Y = 0,09, t, = 10, U” = 0.1 (3.7) 

we can easily show that 

h+ = 1,41, h- = 2.21, W + = 0.27, 6 = 0.16 (3.8) 
Computation according to (2.1) gave n = 3.61 , and this in turn yielded 

K = 47.04, r = 39.09 (3-9) 

Using the data given in (3.7) to (3. 9), we obtained fZo = 0. 12 x 10-3. 
c= 0.11x10~ 

Taking 
we obtain, by (2.14), the following value of radius of the sphere of 

controllability, 3cg = 0.29. 
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